An appearance in Sciencey, a new series from ABC that delivers quick, illuminating answers to some of the strangest questions in the universe. Why do earphones always tangle, and what does this tells us about the universe?
Tutte meets Homfly
I’ll tell you about some extremely clever methods to tell graphs and knots apart, involving polynomials: the Tutte and HOMFLY polynomials. And they’re closely related.
Polytopes, dualities, and Floer homology
This article is an exposition of a body of existing results, together with an announcement of recent results. We discuss a theory of polytopes associated to bipartite graphs and trinities, developed by Kálmán, Postnikov and others. This theory exhibits a variety of interesting duality and triality relations, and extends into knot theory, 3-manifold topology and Floer homology. In recent joint work with Kálmán, we extend this story into contact topology and contact invariants in sutured Floer homology.
Adani: icon of Australian climate infamy
Here we are, in the year 2017. With now 25 years of climate-change international agreements behind us, here we are still trying to build oil pipelines and coal mines.
An Off-the-Record Genocide: Global Resource Extraction Economy Provides Incentives to Destroy DR Congo Indigenous Groups
By Deborah S. Rogers of Initiative for Equality (IfE).
The work of Maryam Mirzakhani
In August 2017 I gave a talk on some of the mathematics of Maryam Mirzakhani, the great Iranian mathematician, first female Fields Medallist. This was a Monash LunchMaths seminar.
Maths week talk at PLC
I gave an outreach talk to secondary students at PLC about mathematics and mathematicians, talking about, among other things, topology, Maryam Mirzakhani, and billiards, in July 2017. Slides are available.
At least mathematics is commendable
The Australian government announced a proposal to force tech companies to provide government agencies with the contents of encrypted communications.
Holy h-principle, Batman!
In which I attempt to explain some of the ideas behind the h-principle.
Morse structures on partial open books with extendable monodromy
Joint with Joan Licata.
We extend the notion of Morse structure on an open book to extendable partial open books in order to study contact 3-manifolds with convex boundary.