In the previous episode, we asked: if you have a family of foliations on a surface, do they arise as the movie of characteristic foliations of a contact structure? In this episode, we ask how unique these contact structures are.

## Convex surfaces and tomography

We’ve seen that convex surfaces have wondeful foliations. We’re now going to consider the relationship between these foliations on surfaces, and contact structures

## Liouville structures and convex surfaces

Starting from a Liouville 1-form on a surface, we have been led to 3-dimensional contact geometry, and convex surfaces. We now go in the other direction.

## From Liouville geometry to contact geometry

(Technical) We’re going to take Liouville structures and move them into 3 dimensions, to obtain contact structures.

## Lovely Liouville geometry

(Technical) I’d like to show you some very nice geometry, involving some vector fields and differential forms.

## The beauty of mathematics shows itself to patient followers

In September 2018 I gave a talk on the life and mathematics of Maryam Mirzakhani in the School of Physical and Mathematical Sciences colloquium at NTU in Singapore.

## Talk on Counting Curves on Surfaces, September 2018

On 19 September 2018 I gave a talk at the National University of Singapore (NUS) in the Topology and Geometry seminar. The talk was entitled “Counting Curves on Surfaces”.

## The algebra and geometry of contact categories, Melbourne July 2018

On Monday July 23 2018 I gave a talk in the Geometry and Topology seminar at the University of Melbourne.

## A-infinity algebras, strand algebras, and contact categories

In previous work we showed that the contact category algebra of a quadrangulated surface is isomorphic to the homology of a strand algebra from bordered Floer theory. Being isomorphic to the homology of a differential graded algebra, this contact category algebra has an A-infinity structure. In this paper we investigate such A-infinity structures in detail. We give explicit constructions of such A-infinity structures, and establish some of their properties, including conditions for the nonvanishing of A-infinity operations. Along the way we develop several related notions, including a detailed consideration of tensor products of strand diagrams.

## Some pure mathematics and consciousness

In November 2017 I gave a talk to the Monash Consciousness Research Laboratory (Tsuchiya Lab). I talked about some pure mathematical ideas that have appeared in the literature on the frontiers of neuroscience and the study of consciousness — gauge theory, and category theory.