Counting curves on surfaces

Joint with Norman Do and Musashi Koyama.

In this paper we consider an elementary, and largely unexplored, combinatorial problem in low-dimensional topology. Consider a real 2-dimensional compact surface S, and fix a number of points F on its boundary. We ask: how many configurations of disjoint arcs are there on S whose boundary is F?

We find that this enumerative problem, counting curves on surfaces, has a rich structure. For instance, we show that the curve counts obey an effective recursion, in the general framework of topological recursion. Moreover, they exhibit quasi-polynomial behaviour.

This “elementary curve-counting” is in fact related to a more advanced notion of “curve-counting” from algebraic geometry or symplectic geometry. The asymptotics of this enumerative problem are closely related to the asymptotics of volumes of moduli spaces of curves, and the quasi-polynomials governing the enumerative problem encode intersection numbers on moduli spaces. Furthermore, among several other results, we show that generating functions and differential forms for these curve counts exhibit structure that is reminiscent of the mathematical physics of free energies, partition functions, topological recursion, and quantum curves.

Strings, fermions and the topology of curves on annuli

In previous work with Schoenfeld, we considered a string-type chain complex of curves on surfaces, with differential given by resolving crossings, and computed the homology of this complex for discs.

In this paper we consider the corresponding “string homology” of annuli. We find this homology has a rich algebraic structure which can be described, in various senses, as fermionic. While for discs we found an isomorphism between string homology and the sutured Floer homology of a related 3-manifold, in the case of annuli we find the relationship is more complex, with string homology containing further higher-order structure.

Topological recursion and a quantum curve for monotone Hurwitz numbers

Joint with Norman Do and Alastair Dyer.

Classical Hurwitz numbers count branched covers of the Riemann sphere with prescribed ramification data, or equivalently, factorisations in the symmetric group with prescribed cycle structure data. Monotone Hurwitz numbers restrict the enumeration by imposing a further monotonicity condition on such factorisations. In this paper, we prove that monotone Hurwitz numbers arise from the topological recursion of Eynard and Orantin applied to a particular spectral curve. We furthermore derive a quantum curve for monotone Hurwitz numbers. These results extend the collection of enumerative problems known to be governed by the paradigm of topological recursion and quantum curves, as well as the list of analogues between monotone Hurwitz numbers and their classical counterparts.